
Control Systems : Set 2 : PID (1) - Solutions
Prob 1 | The dynamics of a DC-motor is described by the differential equation

ẏ + 60y = 600va − 1500w

where y is the motor speed, va is the armature voltage, and w is the load torque. Assume the
armature voltage is computed using the PI control law

va = kpe + kI

∫ t

0

edt

where e = r − y for the reference speed r .

a) Compute the transfer function from W to Y as a function of kp and kI

Compute the closed-loop transfer function, assuming R = 0

(s + 60)Y = 600Va − 1500W

(s + 60)Y = 600kp(−Y ) + 600kI
1

s
(−Y )− 1500W

s(s + 60)Y = −600kpsY − 600kIY − 1500Ws
(s(s + 60) + 600kps + 600kI)Y = −1500Ws

Y

W
=

−1500s
s2 + (60 + 600kp)s + 600kI

b) Compute values for kp and kI so that the characteristic equation of the closed-loop system
will have roots at −60± 60j .

We want the characteristic equation c(s) = (s+60+60j)(s+60−60j) = s2+120s+
7200

We equate the coefficients from the previous question to get

60 + 600kp = 120 → kp = 0.1

600kI = 7200 → kI = 12

Prob 2 | A speed control system for a magnetic tape-drive is shown in the figure below, where the constants
are J = 0.10kg ·m2 and b = 1.00N ·m · sec .
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a) Assuming the reference is zero, what is the steady-state error due to a step disturbance
torque of 1Nm? What must the amplifier gain K be in order to achieve a steady-state error
ess ≤ 0.01rad/sec?

We first compute the closed-loop transfer function from the disturbance to the output

Ω =
1

Js + b

(
D +

10

0.5s + 1
K(−Ω)

)
(Js + b)(0.5s + 1)Ω = D(0.5s + 1)− 10KΩ

((Js + b)(0.5s + 1) + 10K)Ω = (0.5s + 1)D

Ω

D
=

0.5s + 1

(Js + b)(0.5s + 1) + 10K

=
0.5s + 1

(0.1s + 1)(0.5s + 1) + 10K

The error E = Ωr −Ω is just −Ω, as we’ve assumed Ωr = 0.
Assuming that K is chosen so that the system is stable, we can use the Final Value
Theorem to compute the steady-state error in response to the unit step input D = 1

s

lim
s→0
sE(s) = lim

s→0
−s

0.5s + 1

(0.1s + 1)(0.5s + 1) + 10K

1

s

=
−1

1 + 10K

To achieve an error less than 0.01rad/sec, we choose

1

1 + 10K
≤
1

100
→ K = 9.9 ≈ 10

(Note that we dropped the negative sign here, as we only care about the magnitude
of the error here)

b) Give the damping ratio and the natural frequency of the closed-loop system from Ωr to
Ω, and sketch the time response of the output for a step reference input using the gain K
computed in the previous part. Is this a good control system?



The closed-loop transfer function is

Ω =
1

Js + b

10K

0.5s + 1
(Ωr −Ω)

((Js + b)(0.5s + 1) + 10K)Ω = 10KΩr

Ω

Ωr
=

10K

(Js + b)(0.5s + 1) + 10K

=
10K

(0.1s + 1)(0.5s + 1) + 10K

=
200K

s2 + 12s + (200K + 20)

=
2000

s2 + 12s + 2020
For K = 10

We can now compute the natural frequency and damping ratio

ωn =
√
2020 = 45

ζ =
12

2 · 45 = 0.13

We can sketch the time response by first computing the damped frequency, the peak
time, the overshoot, the settling time and the DC gain. These numbers allow us to
sketch an appropriate curve, as seen below.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
0

0.5

1

1.5

Time (s)

We can conclude that this is not a very good controller, as we have around 60%
overshoot and a lot of oscillation.

c) Give values for K and kD for a PD controller which will meet the specifications of a 1%
settling time of ts ≤ 0.1sec and an overshoot Mp ≤ 5%.
Note: Recall that we don’t take the derivative of the reference, and so we place the deriva-
tive term in the feedback path as shown below.
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The transfer function is now

Ω =
1

0.1s + 1

K10

0.5s + 1
(Ωr − (1 + kDs)Ω)

((0.1s + 1)(0.5s + 1) + 10K(1 + kDs))Ω = 10KΩr

Ω

Ωr
=

10K

(0.1s + 1)(0.5s + 1) + 10K(1 + kDs)

=
200K

s2 + (200KkD + 12)s + 200K + 20

Where we can see that by selecting K and kD appropriately, we can choose any desired
damping ratio and natural frequency.
To meet the specification, we could choose

ts ≤ 0.1 → σ ≥ 46
Mp ≤ 0.05 → ζ ≥ 0.7

and then solve to compute K and kD

ω2n =
σ

ζ

2

= 4, 318 = 200K + 20 → K = 21.5

2σ = 200KkD + 12 = 92 → kD = 0.0186

d) How would the disturbance-induced steady-state error change with the new control scheme
in the previous part? How could the steady-state error to a disturbance torque be elimi-
nated entirely?

The derivative term of the controller only impacts the transient response, and so the
steady-state behaviour will be the same. To eliminate the steady-state offset, we need
to add an integrator to the controller.

Prob 3 | A linear ODE model of a DC motor with negligible armature inductance and with a disturbance
torque w is given by

θ̈ + a1θ̇ = b0va + c0w



where θ is the position of the motor and is measured in radians, va is the applied voltage in Volts,
w is the load torque and a1, b0 and c0 are motor-dependent constants.
With rotating potentiometers, it is possible to measure the positioning error between θ and the
reference angle θr or e = θr − θ. With a tachometer we can measure the motor speed θ̇.

a) Draw a block diagram of the resulting feedback system showing both θ and θ̇ as variables
in the diagram representing the motor.

The diagram can be created directly from the ODE expression.
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b) Suppose the motor constants are a1 = 65, b0 = 200, and c0 = 10. If there is no load torque
(w = 0), what speed (in rpm) results from va = 100V ?

We could compute Laplace transforms and use the final value theorem, or we could
just realize that since the system is in steady state, the acceleration must be zero
θ̈ = 0.

θ̇ =
b0
a1
va =

200

65
100 = 307.7

rad

sec
= 307.7 · 60

sec

min
·
1

2π

revolutions

rad

rad

sec
= 2, 938.3rpm

c) Using the parameter values given in the previous part, consider the feedback controller on
the error e = θr − θ and the motor speed θ̇ in the form

va = kpe − kD θ̇

Select the controller parameters kp and kD such that the response to a step input in the
reference has approximately 17% overshoot and settles within 5% of steady-state in less
than 0.05 seconds, when the disturbance is zero w = 0.

The relationship between va and θ is

s2θ + 65sθ = 200va



Replacing va with out control law gives the closed-loop transfer function

s2θ + 65sθ = 200va = 200(kp(θr − θ)− kDsθ)
θ(s2 + 65s + 200kp + 200kDs) = 200kpθr

θ

θr
=

200kp
s2 + (65 + 200kD)s + 200kp

To select our desired damping ratio and natural frequency

Mp ≤ 17% ⇒ ζ ≥ −
lnMp√

ln(Mp)2 + π2
= 0.49

Ts ≤ 0.05 ⇒ σ ≥
− ln δ
Ts

=
3

0.05
= 60

We can now solve for our controller parameters

65 + 200kD = 2σ = 120 ⇒ kD = 0.275

200kp = ω
2
n =
σ

ζ

2

= 14, 993 ⇒ kp = 75


